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Algorithms for Ocean Color Science

Three main approaches for deriving in-water particle properties from satellite data:

1. Empirical algorithms rely on purely statistical relationships between observed signals and
in-water properties, such as using top-of-atmosphere radiance to estimate Chla
concentration with machine learning approaches (e.g., neural networks).

2. Semi-empirical algorithms combine empirical relationships with some physical
understanding, e.g., using the ratio of R, 1n blue and green bands to infer Chla
concentration due to relationships between increasing phytoplankton absorption and Chla.

3. Mechanistic or physics-based algorithms provide a more process-oriented approach, e.g.,
radiative transfer models or retrieval of inherent optical properties from R, to then derive in
water particle characteristics.
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Optical methods for POC estimation

Particulate Organic Carbon concentration (POC) — mass concentration of carbon containted all organic particles

* Predommantly rely on semi-empirical algorithms using

R, ratios 1000 = (a)
* Blue:Green (B:G) ratio decreases — associated
with 1 Chla - g
* Polynomial functions of maximum band ratios 8 6 1= g
often outperform simpler models f : g
« Other constituents (e.g., absorption by non-algal g ° i?f;ffic "
particles) also influence B:G oL 4 Is%(}iﬁ?em
* Provides basis for R, — POC algorithms, E ¥ Arcuc
potentially more robust than Chla approaches - i e '1'0
since POC includes both algal and non-algal MBR
particles Stramski et al. (2022)
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The two-step approach

- Step 1: Invert R, to derive particulate backscattering | 1000 R i‘y,? T
coefticient (b)) - O Atlantic =W
. I acific Ry
* Step 2: Derive POC from b, _ g . NN f‘é
* More theory-driven: links inherent optical properties ‘”’T‘; A %@ﬁ 1
(IOPs) to particle characteristics éﬁ 100 2o :
 Limitations: 2 :
* Large variability in b,,—POC relationships o s8]
* Uncertainty in R, — b,, iInversion e Bal0 ]
* Consequently, best-performing POC algorithms still = Relf
use direct R, input in semi-empirical models 0= ; o """'_] —
(Stramski et al. 2022) 10 10 101 10
bbp [m ]
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Recent advances

. . . 1000
* Incorporate optical proxies for particle _ B R A _
.« . g = B )
composition: A AR E
. . AL 2y ..“:“’“““‘
. Chla:bbp — 1ndicator of algal vs. non- %@ oA ‘“:&3“%“:‘:‘\
. =0 gy ,_'.’ﬂ“' vglie %
O GARE A R
algal dominance 00 VOl 43&353}3?%,":«;?“:‘\
S RmAL o

 Potential applications:

* Global BGC-Argo float array for in-
water POC estimation
e Satellite-based POC retrieval

* Integration of surface (satellite) and
subsurface (BGC-Argo) POC estimates

Particulate Organic Carbon [mg m”

“nonalgal

Sigg, 1107 10° 1
. . ' O 7 Optical Backscattering [m™ ]
* Key challenge: 1dentify external variables to “og
strengthen extrapolation for merging datasets
Koestner et al. (2024) 5
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Objectives

The purpose of this work is focused primarily on examining the performance of the improved

relationships for POC utilizing satellite and in situ data. The main objects are:

. Compare/validate POC estimations from a R,,—POC algorithm (Stramski et al. 2022) and a two-step
approach (Koestner et al. 2024) with concurrent in situ measures of POC and R, ...

2. Compare/validate POC estimations from each method using match-ups of satellite R, and in situ
measured POC

3. Compare POC estimations from satellite R, and in situ estimated POC from BGC-Argo floats over
the MODIS timeseries

4. Identify factors to exploit for merging of satellite and BGC-Argo data (POC and corrections for
Chla F)

1. Allow satellites to guide the interpolation at the surface and the entire BGC-Argo array to
guide terpolation at depth

2. Develop predictive relationships between satellite POC and water-column integrated POC
based on the current dataset.
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Methods

Statistical metrics: MODIS or in situ
R: Pearson correlation coefficient
S: Slope of type-II linear regression (log-space) Rrs

MdR: Median ratio

MnB: Mean bias

MdAPD: Median absolute percent difference
MnSA: Mean symmetric accuracy

Two-Step

OAA-~vS OCI

RMSD: Root mean square deviation l l
Matchup-criteria: Also from
3-hour maximum time difference by,,(700) Chla BGC-Argo
3x3 pixels; at least 3 pass flagging | floats
and hampel filter N
Hybrid-Algorithm Model A Model B
POC POC POC
Stramski et al., 2022 Koestner et al., 2024
(St22) (Ko24) 7
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Avallable varianies.
In situ R, () (In-water and above-water radiometry) In-situ Dataset (/V=509) Nearly all comparison
In situ POC (Blank-corrected) -180° : 0 aQ° data is new to models

307%

-30°

Joshi et al. (2023)
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Hybrid St22 (N = 509)

Estimated POC [mg m™]

[\
(@)

S =105 A=08
MdR = 1.02

MB = 45 [mg m?]
MdAPD = 19%
MnSA = 29%

Estimated POC [mg m?]

RMSD = 47 [mg m?]

(S
-

100 200
Measured POC [mg m™]

500 1000

1000

500 r

50+

[\
(@)

2-step Ko24 Model A (N = 508)

MB = -9.1 [mg m'3]
MdAPD = 37%
MnSA = 53%
RMSD = 61 [mg m?]

Estimated POC [mg m?]

100 200
Measured POC [mg m™]

500 1000

1000

500 +

50+

[\
()

Performance is noticeably improved with multivariable
Model B compared to univariate Model A

2-step Ko24 Model B (N = 508)

S =088 A=18

o MdR = 109
MB = 2.1 [mg m'3]
MdAPD = 23%
MnSA = 33%
RMSD = 47 [mg m?]

20 50 100 200 500 1000

Measured POC [mg m™]

Model B performance is comparable to Hybrid, with only some minimal increase
in bias at lower POC (< 50 mg m-3)
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Objective 2: satellite R, and in situ measured POC

Available variables:

MODIS-Aqua-derived R, () Satellite—In-situ Matchup Dataset (/V = 223) Nearly all comparison
in situ POC (Blank-corrected) and 1807 ;’-g_m o N 2 data is new to models
HPLC Chl-a iy )

307

-30°

Joshi et al. (2023)
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Objective 2: satellite R, and in situ measured POC “x @ e

Again, comparable results between St22 and 2-step Ko24

Hybrid St22 (N = 223)

2-step Ko24 Model B (N = 223)

2-step Ko24 Model A (N = 223)
1000 1000 . ' ' ' ' 1000
So o)
(@) P @]
__ 500 33 i __ 500t e __ 500t
o A ® < @
E ©) $ é 0° (06} " E . E
[ o
2 200+ & o 2 200 F 2 200+
— o 40 oo = [
&) © 00 VR O o &) O
O 100} (8gs ° O 100} S 100}
& % . & &
< < e
g 50l o g ° R=-o® 2 50} g 5]
O 0@ ]
g < S =096 Ax13 = = S =078 A =30
e %o o MdR = 1.09 5= 8= MdR = 095
o) o MB = 14.6 [mg m”] sl = MB = -800 [mg m?] @ MB = 259 [mg m?]
20+ MdAPD = 28% 20 ¢ MdAPD = 45% ' 20 MdAPD = 25%
MnSA = 36% MnSA = 78% MnSA = 37%
10 B | | . RMSD = 116 [mg m 0 rdn | | RMSD = 148 [mg m’ 0 s | ~ RMSD = 104 [mg m’
10 20 50 100 200 500 1000 10 20 50 100 200 500 1000 10 20 50 100 200 500 1000
Measured POC [mg m™] Measured POC [mg m™] Measured POC [mg m™]
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Objective 2: satellite R, and in situ measured POC “x @ e

A 24
J OCI (N = 221)
R
Hybrid St22 (N = 223) 10 o— 2-step K024 Model B (N = 223)
1000 . Bl Ll o ; ey _ b 1 —r——— ST
5 - 5 i ...Q‘.. R 1 » g
__ 500t "PE .7 ® b
.E -~ 7| ® @Cp@) %E(?% o ®d
& D50
2 200+ = oW o® 8 @ b
e = P (©) =
Q CEG o) o) %@ e Q? ’
L @) L
8 100 O 05+ o o . 1 |
= = _ N 4 89%0
£ 50t 8 bt
& < 02¢ [0) CS) R = 0.88 T S = 078; A =30
g c MdR = 1.09 = . o S =09 A =09 MdR = 095
Bl i MB=-14Simd @ 0.0} o® MdR = 097 ] b 1 =50 (1 )
MnSA = 36% | = » MB = -0.5 [mg m”] | MnSA = 37% )
10 & | |  RMSD =116 | 0057 oo, o MdAPD = 23% 1 | ‘A |  RMSD = 104 [mg m’
10 20 50 100 200 50§ - o ? ﬁ'}iﬁi??mg YEy | 10 20 50 100 200 500 1000
Measured POC [mg m™] 002 “——rwu . R Measured POC [mg m™]
NEFCR I N R S
NN
Measured Chla [mg m™] .
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Objective 3: satellite R, and in situ estimated POC %, {>esa

Available Variable§: Satellite—BGC- Argo Ma tchup Dataset (N= 4448) [2012 - 224]
MODIS-Aqua-derived R (L) o D o

BGC-Argo-measured b,,(700) and Chl-a
averaged into upper 5 m

-180° -90°
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Objective 3: satellite R,s and in situ estimated POC ‘\ @ e

Reasonably good agreement between Satellite and BGC-Argo (Model B) POC

—
n
L

S
:

n
1

o
L

5 m depth

SOgSGC-Argo Ko24 Model A (N = 4439) o BGC-Argo Ko24 Model B o BGC-Argo & OCI Ko24 Model B

. . 45
T 200 T 200 T 200 *
= = g .
N o0 o0
E 100} E 100t E 100} £
Q Q Q s
g g g
50 50 50 B2
Q Q Q
= R = 0382 = R = 0.80 = R =093
= S =136 A =02 = S =104 A=10 S, S =121; A=05
= MdR = 091 = MdR = 1.07 = MdR = 101
D90l MB = 25 [mg m?] | Qb MB = 87 [mg m?] | 2yl MB = 66 [mg m?] |
MAAPD = 21% MAAPD = 17% MAAPD = 12%
MnSA = 29% / MnSA = 28% . MnSA = 18%
)2 ! | _RMSD = 33 [mg m”] 0 | | RMSD = 31 [mg m”] 0 | | RMSD = 25 [mg m”]
10 20 50 100 200 500 10 20 50 100 200 500 10 20 50 100 200 500
BGC-Argo POC [mg m™] BGC-Argo POC [mg m™] BGC-Argo POC [mg m™]

Even better agreement if input Chla is from Satellite (OCI)

14

o llc= N 1= oI D " = he Bl 5K im s= E1 == == %]  * THEEUROPEAN SPACE AGENCY




Objective 3: satellite R, and in situ estimated POC \ @esa

1

S Relatively large disagreement perhaps due to Chla F
Reasong OCI vs. BGC-Argo (N = 4376) 8) POC
5 m depth ?8 I 35
BGC-Argo Ko24 Model A [C-Argo & OCI Ko24 Model B
500 5 %0 - 50
F 2 45
s =
& 00l oo 1 25 40
A 2 05 E 5
en iy &
E 100| < 02 20 g lg %
Q = i 2
S O 0.1 | E 525
o S0 Q 0.05 8 15 20 1
= = R =075 - R =093 |
E T) 0.02 =06l A =06 o | SE=R1 AT =10.5 15
2 g 613 . 10 MdR = 101 01
2 20 | 7o) 001 ’ MdR = 1.12 ] MB = 6.6 [mg m?] |
i MB = -0.03 [mg m?] ] MdAPD = 12% 5|
: 0.005 MAAPD = 45% ] 5 MnSA = 18%
10 ! | . 0 002 I AISO |OW Slg nal MnSA = 101% | 1 . IRMSD =|25 [mg m?] 0 -
10 20 50 100 0.001 * RMSD = 047 [mg m” " 20 50 100 200 500
BGC-Argo POC [mg ’ BGC-Argo POC [mg m?]
QQ\QQ’» QQ")QQ\QQ’\» QQ‘@ N % ‘3 NY 50
O Q" © Chla is from Satellite (OCI)
BGC-Argo Chla [mg m™] .
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Objective 4: Identify factors to exploit for merging of Satﬂllte @esa

and BGC-Argo data ,*

Correlation Matrix: AII Variables

satPOC 0.98 0.52 0 0.39 0.54 0.25 -0.06 0.28 -0.1 -0.08
satChla [EeEeL: 0.46 0.01 0.27 0.42 0.45 0.18 -0.04 0.17 -0.07 | -0.04
Interest in developing:
. Chla 0.8 -0.12 0.45 0.05 -0.04 0.12 -0.09 0.03 0.6
1. Chla F correction factors
2. EStImathnS Of Integrated POC comp | 0.52 0.46 0.8 -0.28 0.36 0.52 0.01 -0.05 0.22 -0.14 | -0.13 -
Chla CF 0 0.01 -0.12 -0.23 -0.09 -0.12 -0.14 0.07 -0.05 -0.03 0.03 0.06
NO Strong Correlatlons On g|0ba| Scale iPOC| 0.39 0.27 0.45 0.36 -0.09 0 0.5 -0.19 0.03 -0.05 -0.16 0.2 1%
. iPOCz00 | 0. ! ) -0. 0 -0. ! ! -0. ! -
Naturally, satellite POC correlates strongest il i o S il el ) M A I
with iPOC in the mixed layer compared with IPOCr 0.45 014 | 05 001 | 001 | 021 | 01 | 004 || |
1000 m water column, but still promising 006 | 019 | o | 008
relationships with 200 m integration if we can 04
. . lon| -0.06 -0.04 -0.04 -0.05 -0.05 0.03 0.09 0.01 -0.06 0.01 -0.04 -0.03
leverage other information
sza| 028 | 017 | 012 | 022 | -003 | -0.05 | 005 | 021 | 019 | 0.01 0.08 [ 06
Best options Currently include information MonthsSinceWinter | -0.1 | -0.07 | -0.09 | -0.14 | 0.03 | 016 | 02 | 04 | 0 | -0.04 | 0.08 0.1 o
about location and time of year.
parProxy | -0.08 -0.04 0.03 -0.13 0.06 0.2 0.17 -0.04 -0.08 -0.03 0.8 -0.1
-1
g‘a}?o() gﬁo‘\\a e 006\9 G‘(\\ao‘? .\?OG .\?00,@0 .\?Oo“\\b @ o 51.:\009 \“\0@‘ Qa‘? o
\\0“\“5 16

o llc= N 1= oI D " = he Bl 5K im s= E1 == == %]  * THEEUROPEAN SPACE AGENCY



Objective 4: Identify factors to exploit for merging of satglllte

@esa

and BGC-Argo data

|

Random Forest ensemble model (100 trees) was developed explore relative importance of variables in predicting
Chla Correction Factor (CF) for BGC-Argo float data and POC integrated from surface to 200 m (iPOCyq)

Jé Q q ‘5':- % C%a Correction Factor RF Model - Relatlve Importance

For Chla CF, we find
particle composition
(Chla:b,,) to be a
strong determinant,
then latitude,
(aggregate) biome,
solar zenith angle
(sza) of measurement,
and longitude

Relative importance [%]

Mean biomes from Fay et al. (2014)

Relative importance [%]

[\®]
n

[\®)
=]

—
U
T

10 |

iPOC,yy RF Model - Relative Importance

| For 1POC,,,, Satellite
| POC and latitude are

strongest predictors,

1 but a proxy for daily

PAR potential based

1 on day-of-year and

latitude 1s also useful
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Objective 4: Identify factors to exploit for merging of satglllte —_ @esa

and BGC-Argo data

Chla Correction Factor — (sat/in situ) — (RF) iPOC,y9 — (RF)
48 A 0
10 ¢ CFTT‘ 20 i
g 70
® =0
CEU 8 3 60
S g
O O 10 5 50
3 x
2 1} 3 g 40
"8 I "8 J
5:: o § R = 082 30 -
S =089 A= 103 e S) S =076, A =17
MdR = 101 2 MdR = 101 20
Ay
MB = -0.35 MB = -002 [g m?]
¢ MdAPD = 19% | 4 MdAPD = 9% 1 10
. MnSA = 29% MnSA = 12%
'RMSD = 4.66 RMSD = 16 [g m?]
0.1 o ) N M | N . + I L . \ . P 1 ==
0.1 1 10 4 10 20
Observed Chla CF Observed iPOC2OO [g m'z]
Out-of-bag validation from 5 k-folds 18
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Input layer Hidden layer Output layer

Chla Correctlon Factor (sat/m sntu) (NN)

Two layer NN (10 and 5 node size)

iPOC, — (NN)

1‘&'
90
o 10 - Cr71—1 20 80
S 70
S 20
] 60
= S :
N o
O O 10 5 50
3 x
=
2 1y - 54
o I "8 J
é 5 R = 076 30
O 0SS =093 A=102 3 § =079 A =16
O MdR = 102 = bt = LU 20 -
MB = -0.06 = MB = -002 [g m”]
MAAPD = 21% 4 MdAPD = 10% 104
MnSA = 32% MnSA = 14%
/ RMSD = 841 RMSD = 18 [g m?]
0.1‘ . : P | A . N ==
0.1 1 10 10 20
Observed Chla CF Observed iPOC2OO [g m'z]
Out-of-bag validation from 5 k-folds 19
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Objective 4: Identify factors to exploit for merging of sathlte

and BGC-Argo data T~

Chla Correction I ) — (NN)
* ICE CT 20 T T T T T T T T T T 90
O SPSS E 10t |
Artificial neural networks v STSS OD :_ ] 80
10 - 2 MED = ? O oK *
[ O STPS — I R T a0l O o ]
Ly o EQU = 2 o RSO 9@ 70
@ = 1 P O A
O 60
= 05+ K v ]
= o ’ ,. v O E
@) &0 02 L i 5 50
o] < : 6) =%
Q ' I ;. Al | g
9 8 Uil 5 o & § a0
3 2005} __ 3
= ' \ 509 R=092 ‘ R =076 30
A B 0.02 ¢ O S =098 A=10 | S =079 A=16
o =
o 001 3 MdR = 102 : MdR = 101 -~
& : 5 MB = 001 [mg m?] ] MB = -0.02 [g m?]
S o MAAPD = 21% ] MAdAPD = 10% 1
. o MnSA = 32% MnSA = 14% 0
% RMSD = 040 [mg m’ ] RMSD = 1.8 [g m?] 0
Q\@@xw%\wa 10 20
ATQY 5
Obse _ 3 DCo00 [g m™]
Out-of-bag validation from 5 k-folds Satellite Chla [mg m™] 20
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Conclusions

* Revisiting the two-step approach to estimating POC from R, by first retrieving b, and leveraging a
particle composition proxy suggests comparable results with a semi-empirical band-ratio based approach

* A global comparison of in situ estimated surface POC from BGC-Argo floats reveals overall good
agreement with satellite estimates, with some potential for large errors for low POC values
 Likely linked to relatively large disagreements between Chla estimated from in sifu fluorometers
and satellite estimates (typically developed with extracted pigment measurements)

* Corrections have been developed for improving Chla estimations from in sifu fluorometers on BGC-Argo
floats by leveraging ancillary information

* Average disagreement between BGC-Argo and satellite Chla is reduced from ~100% to 30%

 Using the relatively large dataset of MODIS and BGC-Argo matchups, satellite POC can be combined with
limited ancillary information to produce predictive models for reasonable estimates of POC integrated
within the upper 200 m
* Can we really go any deeper without more information?

* Development of these ideas, 1dentification of additional predictor variables, refinement of models, and
expansion of BGC-Argo float array is expected to support future 3-D products of POC 1n the ~near future

21
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In situ data Satellite L.2 product

~

Select L2 scene acquired within 3 hours
of field measurement

A

A 3 x 3 pixel box (9 pixels) centered at in
situ station is extracted.

\ 4

R (L) (9 pixels)

\ 4

Pixel is rejected if flagged by at least one of
15 L2 quality flags. [ATMFAIL, LAND,
HIGLINT, HISATZEN, STRAYLIGHT,

CLDICE, COCOLITH, HISOLZEN,
LOWLW, CHLFAIL, NAVWARN,
MAXITER, CHLWARN, ATMWARN,
NAVFAIL]

Hempel filter was applied to
remaining pixels to identify and

If number of remaining pixels is less than 3
then matchup is rejected

remove outliers if any.

If number of remaining pixels is greater
than 3 then process continued.

\ 4

Mean and standard deviation are
computed and considered as valid
satellite matchup.

Model A or B POC
algorithms
by,(700) Chla from OCI
Hybrid POC algorithm
QAA-v5

If number of remaining pixels is greater than 3 for
all bands then process continued.

If number of remaining pixels is less than 3 in any band
then the entire 3 x 3 pixel box is rejected and search begun
for the next station.
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Objective 3: satellite R, and in situ estimated POC % @ N

Satellite POC [mg m™]

Other factors potentially influencing disagreement?

|

Higher latitude SPSS and ICE biomes appear to have larger disagreement

Latitude [deg] (absolute)
0O 10 20 30 40 50 60 70 80

500 . . - oy

200 |
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R = 0.80
S =104 A=10
MdR = 107

MB = 8.7 [mg m?]
MdAPD = 17%
MnSA = 28%
RMSD = 31 [mg m]

10 20 50 100 200 500
BGC-Argo Ko24 B POC [mg m™]

Months since local winter (NH Jan, SH Jul)
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10 20 50 100 200 500
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Bias vs Year (slope = 1.52 %/yr)
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Latitude [deg] (absolute)

Months since local winter (NH Jan, SH Jul)
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< 150
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= 02 5 02 5 0 :
0.1} R e 0.1} ~
O { @) ,
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2 0017, MB = -003 [mg ni’] g 001} §
2 0005 MAAPD = 45% © 0005 .- A -100
MnSA = 101% A
0.002 | - I 0.002 | -
0.001 e 0.001
58 838 8238 27 ER 2012 2014 2016 2018 2020 2022 2024
S22 S50 S
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