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s the Southern Ocean a CO, Sink?

Modern CO2 flux
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13t Carbon Mitigation Initiative Annnual Report
https://cmi.princeton.edu/annual-meetings/annual-reports/year-2013/quantifying-the-ocean-carbon-sink/

Southern Ocean thought to be one of the largest sinks of
anthropogenic CO, in the global ocean...



s the Southern Ocean a CO, Sink?

* How much CO, does the Southern Ocean really take up?
 Even the Ss/gnis uncertain:

Annual mean Southern Ocean air-sea CO; flux
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(Long et al. 2021, Science)



s the Southern Ocean a CO, Sink?

* How much CO, does the Southern Ocean really take up?
 Even the Ss/gnis uncertain:

Annual mean Southern Ocean air-sea CO; flux

. i ions? ”
What about specific regions” g

* Varies with latitude?

* Role of biology?

« Seasonality / Phenology?

« Can satellite ocean color data help S o W0, 320, S, SOI S e
us answer these questions? (Long et al. 2021, Science)
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Regional case
study: West
Antarctic
Peninsula

MODIS-Aqua January 16, 2022



Regional case study: West Antarctic Peninsula

* Legacy of in situ observations

_TER 1990-2024

* Rapidly warming

* Seaice decline

« (lacial retreat

« Substantial amount of ship-
based pCO, measurements
(ship tracks)

* Dynamic ecosystem







WAP and South Shetland Islands
September 16, 2021 (HawkEye)
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Data sources

20 years of ship-track
in situ pCO,, data

(2000-2020, binned to
monthly data)

Turner et al. (2025) Geophysical Research Letters



Data sources

Chlorophyll-a from
Ocean Colour
Climate Change
Initiative (OC-CCI)
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Turner et al. (2025) Geophysical Research Letters



Data sources

Satellite data in the Antarctic:
« Challenges

Afonso Ferreira

Seaice Clouds Solar zenith angle

* Opportunities

——————————

Expand spatial coverage Expand seasonal cycle




Results

Drake Passage

Chlorophyll-a from satellite
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Results

Drake Passage Northern Shelf
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Results

Drake Passage Northern Shelf Mid Shelf
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Results

Drake Passage
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Satellite Chl-a (mg m'3)
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Results — Amplitudes of Seasonal Cycles

Drake Passage Northern Shelf Mid Shelf Southern Shelf
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Results — Annual Mean Air-Sea Flux

Drake Passage Northern Shelf Mid Shelf Southern Shelf
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Results — Annual Mean Air-Sea Flux

Drake Passage Northern Shelf Mid Shelf Southern Shelf

Effects of temperature (solubility) vS. other effects
(mixing, biology)?
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Results — T vs. non-1 components

Drake Passage

Chlorophyll-a from satellite
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Results — T vs. non-1 components

Drake Passage Northern Shelf
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Results — T vs. non-1 components

Drake Passage Northern Shelf Mid Shelf
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Results — T vs. non-1 components

Satellite Chl-a (mg m'3)
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Chl-a vs. pCO,, -non-T: R = -0.13, p=0.74 R =-0.98, p<0.001
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Results — T vs. non-1 components

Satellite Chl-a (mg m'3)
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Biology dominates Thermal in the Coastal Zone!

Decadal Averages by Region, Monthly
1 1 I 1 1 1 L] I 1 L] 1 1 I L] 1 1 1 | 1 1 1 1 | 1

e 2000-2010
e 2010-2020 |[]
Line of best fit []

(natm)

Chlorophyll & (mg m'3]

SOCCOM matchups
(Haentjens et al. 2017)

Floats: mostly Chl- 150f
a<1mgm3 " R-Squared: 0.72, p < 0.0001

| Uptlaké | blultgassing
ﬁ

_

A pCO2

L1 l L1 1 1 l L1 1 1 l | I I —
1 2 3

Chl-a (mg m'3)

Turner et al. (2025) Geophysical Research Letters



Biology dominates Thermal in the Coastal Zone!

Chlorophyll & (mg m'3]

SOCCOM matchups
(Haentjens et al. 2017)

Floats: mostly Chl-
a<1mgm3
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Mean Monthly Chi-a 1997-2021 (All Data)
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Coastal Zone of the
Southern Ocean

We are working on using
the imagery and these
relationships to estimate
“average” carbon uptake
across different zones in
the Antarctic



- SOCCOM matchups
(Haentjens et al. 2017)
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Mean Monthly Chi-a,1007-248% (Al Datelfh

Are SOCCOM floats - in
general - missing patterns
from the Coastal Zone?

28



Mean Monthly Chi-a 1997-2021 (All Data) C talZ f th
oastarzZoneo e

Southern Ocean

We are working on using
the imagery and these
relationships to estimate
“average” carbon uptake
across different zones in
the Antarctic

" For ~ 15 % of the

area pictured here
Chl-a>1 mgm
(uptake)

Chl-a (mg m™)




Mean Monthly Chi-a 1997-2021 (All Data)

" For ~ 15 % of the

area pictured here
Chl-a>1 mgm
(uptake)

Chl-a (mg m™)

Summary:

Biology dominates air-
sea CO, fluxin the
coastal zone of the
West Antarctic
Peninsula

Satellite ocean color
data helpsin areas
where floats commonly
undersample



Knowledge gaps and priorities

for next steps
« 1year

“average” spatial patterns in delta-
pCO, estimated from ocean color
(a first-try)

« Dyears

With depth: Incorporate optics on
BGC-Argo floats that stay on the
shelf, obtain depth profiles

Winter: full seasonal cycle including
under-ice

* 10 years — How will this change as:

Areas previously covered in sea ice
open up for more of the season?
Ice-associated waters become
open water for longer with higher
wind speed?
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B Diatoms
Cryptophytes
' Prasinophytes

Haptophytes
* Nearshore, 1st bloom of B Mixed flagellates

the season mostly diatoms
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Seasonal Climatologies

October November December

0.6 1.3 2.5
Chl-a(mgm™)  (Mean 1997-2022)




1. Changing Phenology

| : & Copernicus
OPErNICUS  \T Marine Service

o Satellite-derived Chl-a Bias = -0.031

Mean ratio = 0.91
Mean APD =4.7 %_ .
MAE = 0.044 i T

» CMEMS GlobColour 3 [RMSE=014 izl
Level-4 gap-filled global
Chl-a (Garnesson et al.
2019, Hu et al. 2012,
Gohin et al. 2002)
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1. Changing Phenology

« (lobal algorithm not accurate
for West Antarctic Peninsula

(OngOi ng myStery ! ) 0.3 0.6 1 1.8 3.2 0.3 0.6 1 1.8 3.2
° i Fa C-to r Of 2 n u n d e reStl m a-t | O n Global Algorithm Chi-a (mg m™) Corrected Chl-a (mg m™)

of in situ Chl-a by satellites

Unique optical properties

* Pigment packaging

* High RuBisCO

* Relatively low CDOM,
detritus, bacteria

Future work...
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1. Changing Phenology

Global algorithm not accurate
for West Antarctic Peninsula
(ongoing mystery!) T el R R
“Factor of 2”7 underestimation GlobalAgorm Gl ma ') Corected Ok ma )
of in situ Chl-a by satellites
Corrected global Chl-a to
match field data with 4h-order

polynomial (Dierssen & smith
2000)
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